skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wu, Dong L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice. The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling and the mesospheric H2O increase provides favorable conditions for PMC formation. The global increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021. 
    more » « less
  2. Abstract Observations taken over the last few decades indicate that dramatic changes are occurring in the Arctic‐Boreal Zone (ABZ), which are having significant impacts on ABZ inhabitants, infrastructure, flora and fauna, and economies. While suitable for detecting overall change, the current capability is inadequate for systematic monitoring and for improving process‐based and large‐scale understanding of the integrated components of the ABZ, which includes the cryosphere, biosphere, hydrosphere, and atmosphere. Such knowledge will lead to improvements in Earth system models, enabling more accurate prediction of future changes and development of informed adaptation and mitigation strategies. In this article, we review the strengths and limitations of current space‐based observational capabilities for several important ABZ components and make recommendations for improving upon these current capabilities. We recommend an interdisciplinary and stepwise approach to develop a comprehensive ABZ Observing Network (ABZ‐ON), beginning with an initial focus on observing networks designed to gain process‐based understanding for individual ABZ components and systems that can then serve as the building blocks for a comprehensive ABZ‐ON. 
    more » « less